Algebra Stuff			Trig Stuff Identities
Slope: $m = \frac{y_2 - y_1}{y_2 - y_1}$			$\sin(2x) = 2\sin x \cos x$
$x_2 - x_1$			$\cos(2x) = \cos^2 x - \sin^2 x$
Point-slope form: $y - y_0 = m(x - x_0)$			$\cos(2x) = 2\cos^2 x - 1$
Standard Form: $Ax + By = C$			$\cos(2x) = 1 - 2\sin^2 x$
Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$			$\sin^2 x = \frac{1 - \cos 2x}{2}$
Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			$\cos^2 x = \frac{1 + \cos 2x}{2}$
$-b \pm \sqrt{b^2 - 4ac}$			$\sin^2 x + \cos^2 x = 1$
$x = \frac{1}{2a}$			$1 + \tan^2 x = \sec^2 x$
Ln(e)=1 In1=0 In(ab)=In(a)+In(b) In(a/b)=In(a)-In(b)			$1 + \cot^2 x = \csc^2 x$
$e^{x} > 0$ $e^{2+x} = e^{2}e^{x}$ $e^{-x} = \frac{1}{e^{x}}$			$\sec x = \frac{1}{\cos x}$
Trig Values			$\csc x = \frac{1}{\sin x}$
$\theta \sin \theta$	$\cos \theta$	$\tan \theta$	$\sin(-x) = -\sin(x) Odd$
0 0	1	0	$\cos(-x) = \cos(x)$ Even
$\frac{\pi}{6}$ $\frac{1}{2}$	$\sqrt{3/2}$	$\frac{\sqrt{3}}{3}$	$\tan(-x) = -\tan(x) Odd$ $\cot(-x) = -\cot(x) Odd$
$\pi/_4$ $\sqrt{2}/_2$	$\sqrt{2}/2$	1	$\sec(-x) = \sec(x)$ Even $\csc(-x) = -\csc(x)$ Odd
$\frac{\pi}{3}$ $\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	csc(x) = csc(x) out
$\frac{\pi}{2}$ 1	0	DNE	
π 0	-1	0	
$\frac{3\pi}{2}$ -1	0	DNE	
ASTC to assign +/-			

AP Calculus AB Stuff You Must Know

Differential Calculus Formulas and Rules

$$\frac{d}{dx}(x)^{n} = nx^{n-1}$$

$$\frac{d}{dx}(uv) = uv' + vu'$$

$$\frac{d}{dx}(\operatorname{arcsin} x) = \cos x$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^{2}}$$

$$\frac{d}{dx}(\operatorname{arccs} x) = -\sin x$$

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

$$\frac{d}{dx}(\operatorname{arccs} x) = \frac{-1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx}(\operatorname{arc} x) = \operatorname{sec}^{2} x$$

$$\frac{d}{dx}(e^{x}) = e^{x}$$

$$\frac{d}{dx}(\operatorname{arc} x) = -\operatorname{sec}^{2} x$$

$$\frac{d}{dx}(a^{x}) = a^{x} \ln a$$

$$\frac{d}{dx}(\operatorname{arcse} x) = \operatorname{sec} x \tan x$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\operatorname{arccs} x) = \frac{-1}{|x|\sqrt{x^{2} - 1}}$$

Applications of the first and second derivative

Curve Sketching

- To find a critical value, set f'(x) = 0 or undefined
- Use a sign chart to determine if the function has a relative extrema. Make sure you write sentences summarizing the results.
- Use can also use the Second Derivative Test to verify extrema. Suppose that x₀ is a critical value. If f"(x₀) < 0, then x₀ is the x-coordinate of the relative maximum. If f"(x₀) > 0, then x₀ is the x-coordinate of the relative minimum.
- To find points of inflection, set f''(x) = 0 or undefined. Then, show that the sign of f''(x) changes as *x* passes through that point.

Three Important Theorems

Intermediate Value Theorem

If a function, f(x) is continuous on a closed interval [a, b] and y is some value between f(a) and f(b), then there exists at least one value x = c in the open interval (a, b) where f(c) = y.

In other words, a continuous function must pass through every *y*-value between f(a) and f(b),.

Mean Value Theorem

If a function, f(x) is continuous on a closed interval [a, b] AND is differentiable on an open interval (a, b), then there exists at least one value x = c in the open interval (a, b) where $f'(c) = \frac{f(b) - f(a)}{b - a}$.

In other words, there is at least one point on a smooth curve where the tangent line can be drawn so that it is parallel to the secant line drawn through the endpoints of the interval.

Rolle's Theorem

If a function, f(x) is continuous on a closed interval [a, b] AND is differentiable on an open interval (a, b) AND f(a) = f(b), then there exists at least one value x = c in the open interval (a, b) where f'(c) = 0.

In other words, if the endpoints of a differentiable function have the same *y*-coordinates, there is at least one point inside the interval where the slope of the tangent line is equal to zero. This is a special case of the

Integral Formulas

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c; n \neq -1$$

$$\int \tan x dx = -\ln|\cos x| + c$$

$$\int \cot dx = \ln|\sin x| + c$$

$$\int \cot dx = \ln|\sin x| + c$$

$$\int \csc x \cot x dx = -\csc x + c$$

$$\int \sec x dx = \ln|\sec x + \tan x| + c$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = \arcsin x + c$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = \arctan x + c$$

$$\int \frac{1}{1+x^{2}} dx = \arctan x + c$$

$$\int \frac{1}{1+x^{2}} dx = \arctan x + c$$

$$\int \sin x dx = -\cos x + c$$

$$\int \csc^{2} x dx = -\cot x + c$$

$$\int \frac{1}{x\sqrt{x^{2}-1}} dx = \arctan x + c$$

(Integration by parts)

Fundamental Theorem of Calculus – Part 1	Fundamental Theorem of Calculus – Part 2	Average Value Theorem		
$\int_{a}^{b} f'(x) dx = f(b) - f(a)$	$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	If a function $f(x)$ is continuous on the closed interval [a, b], then there exists some number $x_0 = c$ such that $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$		
Volume of a Solid of Revolution (disk method)	Volume of a Solid with a Known Cross-Section			
$V = \pi \int_{a}^{b} \left(\left(OR \right)^{2} - \left(IR \right)^{2} \right) dx \text{ or } dy$	$V = \int_{a}^{b} Area(x) \ dx$			
Particle Motion Formulas				
$velocity = \frac{d}{dt}(position)$	acceleration = $\frac{d}{dt}$ (velocity)	$displacement = \int_{t_1}^{t_2} v(t) dt$		
total dis $\tan ce = \int_{t_1}^{t_2} v(t) dt$	$Avg \ velocity = \frac{position_2 - position_1}{time_2 - time_1}$	Final Position = $x(t_1) + \int_{t_1}^{t_2} v(t) dt$		